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Uncertainty Propagation methods are well-established when used in modeling and simulation formalisms

like differential equations. Nevertheless, until now there are no methods for Discrete-Dynamic Systems.

Uncertainty-Aware Discrete-Event System Specification (UA-DEVS) is a formalism for modeling Discrete-

Event Dynamic Systems that include uncertainty quantification in messages, states, and event times. UA-

DEVS models provide a theoretical framework to describe the models’ uncertainty and their properties. As

UA-DEVS models can include continuous variables and non-computable functions, their simulation could be

non-computable. For this reason, we also introduce Interval-Approximated Discrete-Event System Specifica-

tion (IA-DEVS), a formalism that approximates UA-DEVS models using a set of order and bounding functions

to obtain a computable model. The computable model approximation produces a tree of all trajectories that

can be traversed from the original model and some erroneous ones introduced by the approximation process.

We also introduce abstract simulation algorithms for IA-DEVS, present a case study of UA-DEVS, its IA-DEVS

approximation and, its simulation results using the algorithms defined.
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1 INTRODUCTION

When we model a real system, we produce an abstract representation of what we observe in reality.
This abstraction process implies a loss of information [18] that could be noted as imprecision on
the model specification. Such partial knowledge can be a product of technical limitations, tools to
observe the phenomenon being studied, representation limitation leading to approximations, lack
of access to the real system, modeling a system that is yet not created. The partially defined data
is usually called “data with uncertainty”.
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2:2 D. Vicino et al.

In many areas, data uncertainty can be characterized mathematically, and the uncertainty of the
virtual experiments can be computed from the components of the virtual experiment. This com-
putation is known as “Uncertainty Propagation”. For example, data collected for continuous mag-
nitudes are known to be inexact [1], however, they are used in science and engineering every day.

The International Bureau of Weights and Measures (BIPM) proposes to capture the impre-
cision as a set including all possible values attributed to a measurand. We call this set of values
the “uncertainty quantification” of the “measurement result” [2]. The concepts of uncertainty and
uncertainty propagation can be used also outside of the Metrology domain. We can easily use them
to characterize approximated discrete data sets or to describe theoretical conjectures.

There are well-established methods for studying Uncertainty Propagation in continuous models,
and uncertainty in discrete-time models can be studied by exploring each set of values in the
uncertainty quantification. Nevertheless, there are no methods for the propagation of uncertainty
in Discrete-Event Dynamic Systems (DEDS). This research presents a family of formalisms
based on Discrete-Event System Specification (DEVS), a universal formalism for DEDS [20].

As there are no formalisms for specifying uncertainty in DEDS models, there are no DEDS simu-
lators with uncertainty propagation mechanisms. Thus, in [17] we proposed a simulation method
to propagate the uncertainty of a set of uncertain exogenous events. Here, we extend those con-
cepts and introduce Uncertainty-Aware DEVS (UA-DEVS), a formalism that can be used to
model DEDS including uncertainty quantifications. UA-DEVS allows the modeler to describe un-
certainty for the variables used to represent time, states, and messages by using sets that represent
uncertain values.

As we will discuss in Section 3, UA-DEVS models have no restrictions on cardinality, and they
can contain non-numerable elements, allowing one to think about the model more intuitively. As
well, this allows studying the model’s properties without compromising accuracy at the modeling
level. Although this can be done to improve computational costs, it normally carries a cost: the
models built are complex to understand, as they need to include computational artifacts related to
the simulation process, which is not needed with UA-DEVS.

From here on, we will say that a formalism is simulable when we can find a method that, when
conducting virtual experiments, generates a set of trajectories (i.e., we can formally prove that
we can generate the trajectories). Similarly, we will say that a formalism is simulatable when the
method used for generating the trajectories can be automated to be executed in computers (i.e.,
without human intervention).

Since UA-DEVS can generate an infinite unsorted and non-continuous set of states in a single
simulation step, we can say that the formalism is simulable, but not simulatable. This means that
UA-DEVS can be used for defining models formally that can generate trajectories that can be
defined formally, but there is no mechanism to execute those formal models in a computer using
an algorithm to generate such trajectories. We thus also need to define a simulatable formalism,
that we named Interval-Approximated DEVS (IA-DEVS), which approximates the formal UA-
DEVS models but allows the models to be simulated on computers. Converting a UA-DEVS model
to an IA-DEVS model only requires adding a few functions to the model definition. These functions
are based on intervals in place of arbitrary sets for the simulation variables. We need to define an
abstract simulation algorithm for IA-DEVS that guarantee that the approximation errors do not
exclude any trajectory from the UA-DEVS model been approximated. However, UA-DEVS allows
us to model the system and describe its uncertainty properties as accurately as possible. And, IA-
DEVS can be used to construct multiple approximations based on computational constraints (time,
memory, etc.). This separation of concerns allows the domain expert to define the model once,
and then we can iterate its simulatable approximations without losing sight of the expected model
behavior.
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The rest of the article is organized as follows: In Section 2, we present background and related
work relevant for our research; in Section 3, we present the formal specification of UA-DEVS mod-
els; in Section 4, we present the formal specification of IA-DEVS models; in Section 5, we explain
how to obtain an approximated IA-DEVS model from a UA-DEVS; in Section 6, we present the
algorithms to simulate IA-DEVS models; in Section 7, we present a case study; and in Section 8,
we discuss conclusions and future work.

2 BACKGROUND

2.1 Uncertainty Theory

Uncertainty is a concept used to describe incomplete knowledge, partial unknowns, and vague
definitions. For example, we introduce uncertainty in colloquial language when we use phrases
like “approximately one meter”, or “around 39 Celsius”. In technical environments, we introduce
uncertainty to measure magnitudes [1, 2].

A common source of uncertainty for modeling and Simulation (M&S) is that we use real
systems measurements. In Metrology, the science of measurements and its applications, the True
Value of a measure (i.e., the single value obtained with perfect accuracy) cannot be known. The
measurement results of a magnitude must include quantification of its uncertainty as described in
Guide to the Expression of Uncertainty in Measurement [1] published by the Bureau International
des Poids and Measures (BIPM, an international agency for standardizing international Units). Ac-
cording to BIPM [1], a measurement result can be described as a set that includes all the reasonable
values that could be assigned to the measurand (the target of the measure). Uncertainty concepts
are also used in other areas that can benefit from Simulation, as for designing innovative technolo-
gies [19], and for describing tolerance descriptions in industrial Quality Assurance [13], and so
on.

Uncertainty Theory [9] presents an axiomatic definition of Uncertainty whose core concepts
are the Uncertainty Measure, Uncertain Variables, and Uncertainty Distributions. The Uncertainty
Measure is based on the degree of belief over an uncertain event. Uncertainty Variables repre-
sent imprecise quantities. Finally, Uncertainty Distributions model how a belief distribution is
interpreted. It is a common misconception that uncertainty can be modeled using fuzzy logic or
stochastic models. However, it was showed uncertainty does not behave like any of them [9].

2.2 Discrete-Event System Specification

DEVS [20] is a formalism for modeling Discrete-Event Systems that provides a formal specification
for hierarchical modeling and an abstract method to simulate legitimate models. The simulator is
independent of the models, and it has been proven to simulate the DEVS models correctly. In DEVS,
a model is built as a hierarchy of two kinds of components: atomic models and coupled models.

In DEVS, the atomic models are defined as a tuple A = 〈X ,Y , S,δint ,δext , λ, ta〉 where:
X is the set of inputs; Y is the set of outputs; S is the set of sequential states;
Q = {(s, e ) |s ∈ S, 0 ≤ e ≤ ta(s )} is the total state set (where e is the time elapsed since last

transition);
δint : S → S is the internal transition function; δext : Q × X → S is the external transition

function;
λ : S → Y is the output function; ta : S → R+ is the time advance function.
It is a common misconception to believe that S , the sequential state set of DEVS models, must be

discrete. The set S can be defined as an arbitrary set of values that is not required to be discrete [20,
Section 4.1]. In [20] the authors introduce various models using S defined over an uncountable set.
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DEVS is defined as a DEDS because, even for models with uncountable possible values in S, the
trajectories generated only visit a discrete set of events in that set.

As we need to use these theoretical concepts, we now discuss a classic example of a DEVS
model that will be used to explain uncertainty ideas. This model, called Processor in the DEVS
literature [20], uses an S set defined over an uncountable set. It represents a server that receives
jobs to be executed. Each job takes a fixed time to run. In case the Processor is busy and a new job is
received, the new job is queued until the current one is completed. Each job completion generates
an output.

Therefore, the model Processorprocess_dur ation = 〈X ,Y , S,δint ,δext , λ, ta〉, can be defined as
X = Y = N;
S = 〈TOCJ ,QJ 〉 where: TOCJ (Time Of Current Job) represents the time (R+) until the current

job started processing; QJ (Queue of Jobs) is a queue of processes, each of which is a value in N;
δint (s ) = 〈process_duration, s .QJ .dequeue_f irst〉;
δext (s, e,x ) = if (s .QJ .size = 0) then 〈0, S .QJ .queue (x )〉 else 〈s .TOCJ + e, s .QJ .queue (x )〉;
λ(s ) = s .QJ . f irst ; ta(s ) = if (s .QJ .size = 0) then∞ else process_duration − s .TOCJ .
Here, process_duration defines a fixed amount of time that each job needs to be processed. The

inputs (X ) are Natural numbers, each of which identifies a process in the queue. The outputs (Y )
are Natural numbers identifying the processes that are completed. The sequential state set (S) is
represented as the Cartesian product of Reals by the power set of jobs. For simplicity, we callTOCJ
the first component of elements in S , a Real number that represents how long the process has been
active. We name the second component QJ , a list of jobs to be processed.TOCJ is needed because
time is local to the model, and the elapsed time of the model (e) is reset after each event is processed.
In addition, as the first element of the pair is a Real number, the sequential state set is not discrete.
This is not a problem: DEVS only needs trajectories to visit discrete states to be legitimate.

The internal transition function (δint ), which is executed at the end of processing a job, dequeues
the next job from the head of QJ and resets the processed time counter. The simulation algorithm
will never call this function if the model is passive (which is represented using a time advance of
infinity). The model is passive when there are no jobs in the queue. When the external transition
function (δext ) receives an external event (i.e., a new process), it queues it for processing. If the
queue was empty at that time, the process starts immediately, and the counter (TOCJ ) is reset;
otherwise, the timer is set to the time representing what was processed before, plus the elapsed
time since the last event. The output function (λ) executes when a job is completely processed and
transmits the identifier of the first job in the queue. The time advance function (ta) computes the
remaining time until the end of the current job (if there are any jobs left in the queue). As discussed
earlier, when there are no jobs in the queue, ta returns∞+, indicating that the model is passive.

We also use a Generator model [20]. In its simplest form, it receives no input, and it outputs the
same value periodically, like a clock in an electronic component.

In DEVS, the model Generatorper iod = 〈X ,Y , S,δint ,δext , λ, ta〉, can be defined as
X = R; Y = {1};
S = {r |r ∈ R+ ∧ r < period } where period ∈ R+ is the period between generated values;
δint (s ) = 0; δext (s, e,x ) = s + e; λ(s ) = 1; ta(s ) = period − s .
Any real number is a valid input: None are expected, and if any is received, it is ignored. The

output is a single value (in this example, number 1), repeated periodically. To keep the period
aligned to the absolute timeline, we need to keep track of the possible interruptions, as we did with
the Processor. Then, we accumulate the time advance in S . The function δint resets the counter after
each output. The function δext keeps track of time advances when an external event is received
(and ignored, as explained). Function λ always outputs the value 1. The time advance function ta
uses the value stored in S and the specified period to schedule the next output.
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Fig. 1. Coupled model C.

Coupled models are used to compose models hierarchically in DEVS. We next present how
these models can be combined into a larger model to produce an emergent behavior of their col-
laborations. A coupled model is defined by a set of DEVS sub-models and a description of how
these sub-models interact with each other [20]. Formally, a coupled Model is defined as a tuple
C = 〈X ,Y ,D,M, I ,Z , SELECT 〉 where:

X is the set of input values; Y is the set of output values;
D is an index for the DEVS component models of the coupled model (which can be atomic or

coupled);
M = {Md |d ∈ D} is a tuple of DEVS models as defined previously;
For each d ∈ (D ∪ {sel f }), Id is the influencer set of d, Id ⊆ (D ∪ {sel f }),d � Id
For each i ∈ Id , Zi,d is the i to d output translation function with:

Zi,d : X → Md .X
Zi,d : Mi .Y → Y
Zi,d : Mi .Y → Md .X

if i = sel f , known as the external input coupling,
if d = sel f , known as the external output coupling,
otherwise, known as the internal coupling;

SELECT : (P (D) − ∅) → D is the tie-breaker function that sets priority in case of simultaneous
events.

Here, the model uses X and Y input/output sets to build a modular interface to couple models
with each other. The coupled model uses an index of its components, namedD. TheM set identifies
each of the coupled model subcomponents, and associates them to the index set D. For each model
in the set, we define the influencer set I , which defines how models in the coupled models are
connected. Using the I set, we build the Z translation function, which defines how to connect the
outputs in one model and convert them into inputs into another. The SELECT function acts as
a tie-breaker in the case that two or more models are activated simultaneously: it decides which
of the sub-models execute first. Let us consider this definition in the example shown in Figure 1.
Here, we connect four Generators sending jobs to a single Processor. Each Generator has a period
of 1,000 ms, and the Processor can process one job every 250 ms. The formal specification for this
coupled model is defined as C = 〈X ,Y ,D,M, I ,Z , SELECT 〉 where:
X = Y = N; D = {G1,G2,G3,G4, P };
IG1 = C , IG2 = C , IG3 = C , IG4 = C , IP = {G1,G2,G3,G4}, IC = {P }
MG1, MG2, MG3, MG4 and MP are atomic Models;
ZG1,P (v ) = {1}, ZG2,P (v ) = {2}, ZG3,P (v ) = {3}, ZG4,P (v ) = {4}, ZP,sel f (v ) = v ;
GG1,P (v ) = v , CG2,P (v ) = v , CG3,P (v ) = v , CG4,P (v ) = v ;
SELECT (d ) =min(d ) where G1 < G2 < G3 < G4 < P .
Here, our coupled model (C) receives any natural number as input. The output (Y ) is the job

identifier sent by the Processor. We define the same set of values used in the Processor. The iden-
tifiers set (D) contains C, G1, G2, G3, G4, and P. The influencer set P (IP ) which contain G1, G2, G3,
G4. The influencer set of C (IC ) contains P. The influencer set of each Generator which contains C.
Identifiers (D), and influencers (I ) can be diagramed as shown in Figure 1 for a quicker-to-read rep-
resentation. The translation function (Z ) transforms each output from a different Generator into
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2:6 D. Vicino et al.

a number identifying the source of the message, and it uses the identity function for values being
sent from the Processor to the coupled model itself and from the coupled model to the Generators.
Finally, the SELECT function gives priority to the execution of simultaneous events, so that any
generated job is queued before any other is dequeued.

If we study the execution trajectories of this coupled model, we obtain the following results. Each
second, four jobs are queued (in P) in order: 1, 2, 3, and 4. After 250 ms, the first job (1) is completed.
After another 250 ms, the second job (2) is completed; then the third (3), and the fourth (4). Then,
the internal transition (which will send its completion message) must be executed simultaneously
with the queuing of four more jobs. SELECT gives priority to the queuing of new jobs; therefore,
there are five jobs in the queue. After all the jobs are queued, the message is sent, and the fourth
job (4) is dequeued. This repeats every 1,000 ms.

A property of the model is that it never has more than five jobs in the queue at the same time.
An extension to the previous definitions, known as DEVS with ports, defines DEVS models with
multiple ports for inputs and outputs. DEVS with ports is proven equivalent to DEVS [20]. In this
research, we use DEVS (without ports) as we focus on the definition of uncertainty; using “clas-
sic” DEVS allows us to keep the algorithms simpler to describe and understand. However, as the
specifications are equivalent, we recommend developing computer implementations supporting
ports. The adaptation only needs a few syntactic replacements, and makes tools more intuitive to
be used by modelers.

One of the advantages of DEVS is that all the models can be simulated by the same simula-
tion algorithm, which follows an abstract specification defined in [20]. These abstract algorithms
proposed by Zeigler are based on a definition consisting of three simulation entities:

— Simulators, which provide the mechanisms to simulate atomic models.
— Coordinators, which provides the mechanisms to simulate coupled models by coordinating

the Simulators or Coordinators of their sub-models.
— Root Coordinator, which provides a top-level component to advance the simulation by ad-

vancing the time in the top coupled model.

Both Simulators and Coordinators use their own data structures to track the advance of time
and the current state of the component they control. They use four functions to advance the sim-
ulation when needed. The functions are named after the messages they receive:

— init-function initializes all the data structures at the start of the simulation.
— *-function advances the simulation because of an internal state transition.
— x-function represents an external event received, and it triggers an external transition.
— y-function processes the return messages from lower-level Simulators or Coordinators and

passes them to the corresponding Coordinators and Simulators.

2.3 DEVS Extensions

Several extensions have been proposed to DEVS, for example, Parallel DEVS (PDEVS) [3] targets
solving problems on serial computation caused by the SELECT function; and Finite & Deterministic
DEVS [6] can be used to study all reachable states based on graph theory.

Our early studies of Discrete-Event Simulation with uncertainty assumed models perfectly accu-
rate. First, we presented an extension to DEVS with new simulation algorithms [15] that allowed
exogenous events with uncertainty. The events propagate uncertainty through the simulation us-
ing a branching mechanism. We then characterized a subset of DEVS models that were simulatable
for every input. We called the subset Finite-Forkable DEVS. Then, we introduced new algorithms
with approximation errors, simulatable for DEVS models with uncertain input events [17], using
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order functions over the set of sequential states. Using these functions, the simulator can combine
infinite reachable states into a finite number of intervals. The method can lead to unreachable
states, but never misses a reachable one (similarly to propagation methods used in Continuous
Systems M&S).

This research is significantly different. We propose the first system specification with uncer-
tainty quantification for all model properties (previously we only allowed uncertainty in the in-
puts). In our previous research, we found out that we need to sort the functions using interval
approximations. We defined a system specification to include these ordering and bounding func-
tions, and a method to keep them separated from the model. In addition, we introduce a new in-
termediate specification (called IA-DEVS) that allows studying multiple approximation strategies
for each model, to better understand optimization opportunities. For example, we could study the
impact of using floating-point against fixed-point of a particular model without changing neither
the simulator nor the model. In addition, we here introduce coordination algorithms not presented
earlier.

Fujimoto et al. discussed Uncertainty and Discrete-Event Simulation [4, 10]. They take models
defined as perfectly accurate, and they introduce artificial uncertainty intervals to the events. They
use the concepts of Approximate Time and Approximate Time Event Ordering, where a common
ordering used is called “Approximate Time Causal”. In this ordering, two events are considered
concurrent if the interval representing them has a non-empty intersection. For concurrent events,
a second ordering is used, the causality relation before than [8]. This approach state that there is
a relation between the simulation accuracy and uncertainty, but they do not provide tools to limit
the errors, quantify the uncertainty of the results, or express qualitative information about the
validity of the results. Other authors proposed to introduce uncertainty on the spatial properties
of the model for obtaining speed-ups [5, 11]. Although these methods discuss uncertainty, the
problem they are trying to solve is different than the one presented in this research. The authors
introduce a method that starts from a model that is described accurately and then they introduce
artificial uncertainty to generate a similar model that runs faster. The new model is not guaranteed
to generate the same trajectories as the one been approximated, neither have its error bounded in
any way. However, in some scenarios where the time to make a decision is tight, and one knows
that the models will provide similar results, this method can be useful.

Saadawi and Wainer explored in [12] replacing time data type in DEVS models by intervals and
presented the RTA-DEVS extension formalism. The major limitation of replacing the time variables
with intervals that represent an uncertain value is that it would be not possible to identify the next
event. The algorithms in IA-DEVS focus on how to explore all the possible outcomes of different
orders between those events whose uncertain interval overlap. In addition, UA-DEVS and IA-DEVS
provide methods to specify uncertainty in the state, input, and output variables in addition to the
time variable.

2.4 Formal Notes

In this section, we discuss a few issues related to the formal definition of DEVS models and the
simulation algorithms, which have not been formally defined in the past.

— In [20], the explanation of DEVS simulation algorithms focuses on the ∗, x , and y messages
used to advance each step of a simulation. There is little detail given about how the initial-
ization init messages are defined. In our case, init is a tree structure describing the hierarchy
of the Model simulated. In the leaves of the tree, we keep a value from the total state set (Q)
of each atomic model. Traversing the tree, each atomic model is initialized with its value
from Q . We also need to have a clear definition of the use of init by the DEVS’ simulation
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2:8 D. Vicino et al.

algorithms, whose purpose is defining an initial state for a simulation experiment. This initial
state could be defined artificially, but also could be used for resuming a paused simulation,
if the state at the time it was paused was captured.

— In the definition of DEVS, the Set Theory used for defining states and messages is never
mentioned explicitly, but there are many Set Theories. In the context of this article, we follow
Zermelo–Fraenkel with the axiom of Choice (ZFC) Set Theory [7]. ZFC theory includes
the Well-Ordering Theorem, which states that there is a relation of total order for every set
(i.e., every set can be well-ordered). It includes another important property: all non-empty
subsets have an element that is the smallest in that order. The use of ZFC for defining our
models’ guarantees that we can find order functions for defining approximated models, as
described in Section 4.

— Some authors refer to intervals as segments of R. In the context of this research, we use the
word interval as a broader definition applicable to subsets of any ordered set that could be
described by an upper bound, a lower bound, and their inclusion or not.

— We adopt the following notation for common set operations. AB refers to all possible func-
tions from the Set B to the Set A. For example, if A = {1, 2} and B = {2, 3}, then AB has four
functions in B → A: f (x ) = 1, f (x ) = 2, f (x ) = x − 1, and f (x ) = 4 − x . P (D) refers to the
Power Set of D including ∅. For example, if D = {1, 2}, then P (D) refers to {{}, {1}, {2}, {1, 2}}.

3 UNCERTAINTY-AWARE DEVS (UA-DEVS)

The UA-DEVS is a DEVS formal description that considers Uncertainty properties. Domain experts
can capture the data model without worrying about the approximations needed for the simulation
of experiments, or the implementation details for generating the trajectories of the simulated dy-
namic behavior.

UA-DEVS are also composed of behavioral models (Atomic), and Structural models (Coupled)
as in DEVS. The models’ input, output, state, and time variables include uncertainty. Each com-
bination of the individual elements from the specification description specifies a DEVS model.
UA-DEVS is a specification of a family of DEVS models where all models are related by describing
all behaviors of systems with uncertainty.

3.1 Atomic Model

In UA-DEVS, an atomic model is defined as a tuple 〈X ,Y , S,δint ,δext , λ, ta〉 where X , Y , S , and Q
are defined as those in DEVS discussed in Section 2.2. Based on these, we now define
Xp = P (X ) − ∅ is the set of uncertainty-aware inputs;
Yp = P (Y ) is the set of uncertainty-aware outputs;
Sp = P (S ) − ∅ is the set of uncertainty-aware sequential states;
Qp : P (Q ) − ∅ is the set of uncertainty-aware total states;
δint : Sp → Sp is the internal state transition function;
δext : Qp × Xp → Sp is the external state transition function;
λ : Sp → Yp is the output function; ta : Sp → P (R+) is the time advance function;
As discussed in the previous section, P is the notation used for the power set operator.
The definition of UA-DEVS atomic models extends classic DEVS. X , Y , S , and Q have the exact

same meaning as in DEVS, and for each of them, a new power set is defined (represented with
the p subscript). These new sets capture all the values in an uncertainty context. For example, Y
defines values of output, while Yp defines all sets of output combinations that could result from
propagating uncertainty during the process. In the case ofX , S , andQ , we explicitly prohibit the use
of the empty set, however, we allow it in Y to represent models with no outputs. The restriction is
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Uncertainty on Discrete-Event System Simulation 2:9

based on semantics: an empty input conflicts with the meaning “not having an input”, so, it should
not trigger the external transition. In addition, a model with an empty state set would mean that
no state was reached by the simulator, and this is an impossible situation. However, an output
with no events during an internal transition is convenient for defining the complex evolution of a
system.

The functions defined for UA-DEVS have domains and co-domains in Xp , Yp , Sp , and Qp . The
functions must be defined from sets of sets to set of sets, allowing the representation of uncertainty
in the function parameters and the results. For example, if S = {0, 1} then Sp = {{0}, {1}, {0, 1}},
and an internal transition function could be defined as δint (s ) = s ∪ {1}. Here, if the previous
sequential state was 0, evaluating the internal transition function adds uncertainty by returning
the set of sequential states {0, 1}. Likewise, if the sequential state was {1} or {0, 1} the set is not
altered and δint returns the same value received by parameter.

The time advance function is defined from Sp to P (R+) to account for the case where different
sequential states schedule their next internal event at different times. DEVS models normally use
a time advance of infinite to define a passive model (i.e., one without a scheduled future internal
event). The time advance function, now with its domain in Sp and co-domain in P (R+), cannot
use infinite as a value to represent passive models: infinite is not an element of the co-domain. We
have two alternatives; we could specify it as a set with infinite as its only element or use the empty
set to represent passive models. We prefer the latter to simplify the notation in the algorithms. For
example, if we have a passive system with a future events list noted as ∅, and another with an
event scheduled at 1,000ms in the future with its future events list noted as {1,000ms}, the union
of their future events list will produce a single event at 1,000ms in the future, as expected, since
∅ ∪ {1,000ms} = {1,000ms}.

In DEVS, the simulation stops if all models are passive. As mentioned earlier, this is represented
using a time advance function that returns the value infinity. Similarly, in UA-DEVS a simulation
reaches a final state and stops if all models are passive, which in UA-DEVS are represented with
all models producing an empty set as a result of evaluating their time advance function.

Recall that events in Discrete-Event Systems always produce an instantaneous change. In UA-
DEVS, events are still instantaneous, but we evaluate all the possible instants they may occur.

The following is the specification of a Generator model that sends an output approximately
every 1,000ms . In this example, we set the uncertainty for the output to be between 997ms
and 1,005ms . The output generated is one of two values, 1 or 2. Any input message (any
real number) is discarded. Formally, GeneratorU A is an atomic model described by the tuple
〈X ,Y , S,δint ,δext , λ, ta〉 where:
X = R; Y = {1, 2}; S = {r |r ∈ R+ ∧ r ≤ 1005ms};
Xp = P (R) − ∅; Yp = {∅, {1}, {2}, {1, 2}}; Sp = P (S ) − ∅; δint (s ) = {0};
δext (q,x ) = {(s + e ) |s ∈ q.state ∧ e ∈ q.time}; λ(s ) = {1, 2};
ta(s ) = {(l − e ) |l ∈ [997, 1005]ms ∧ e ∈ S }.
This model is an extension with uncertainty to the DEVS Generator defined in Section 2.2. The

uncertainty is presented in the output of two possible values (1 and 2) and the period between
outputs, which can take values between 997ms and 1,005ms .

We define S as the set of real values between 0 and 1,005ms , which are used to keep track of
the time elapsed since the last internal transition when an external event is processed. We allow
the model to receive any set of real values as input message (Xp ); however, we ignore those inputs.
The definition of Y comes directly from the description of the model: we want to output a value of
1 or 2. The δint function reset the elapsed time counter in the sequential state variable to {0}, since
its execution indicates an output is being produced. The δext function ignores any input, to do so
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it updates the elapsed time counter in the sequential state adding the value of e at the time it is
processed. The λ function always outputs both Y values as needed by the description of the model.

Without any inputs, this model outputs {1, 2} every [977, 1,005]ms . When there are inputs, we
adjust the sequential state to hold the elapsed time since the last output, and this lets ta compute
the difference between the next scheduled internal event and the time elapsed since the last output.
δint sets the same state in every iteration when there are no external stimuli. However, when an ex-
ternal event is received, δext executes, and new sub-sets of S can be assigned to the sequential state.

This model captures all specifications of classic DEVS models for the constraints of the uncer-
tainty intervals provided. When we simulate this model, we generate a set of trajectories that
includes all trajectories of every DEVS Generator model whose output is 1 or 2, and their time
advance period is between 997ms and 1,005ms . In addition, other trajectories are included, for ex-
ample, variants of generators with alternating time advance periods inside the range of values
considered.

To show that the behavior of a DEVS Generator with a 1,000ms period is included in the set
of trajectories of this model, we just need a syntactic replacement. This is because 1,000ms is
included in [997, 1,005]ms , so it is simulated as part of all the values in the interval. Similarly, the
simulation trajectories also include all those of the DEVS Generator with a period between 997ms
and 1,005ms . Furthermore, the trajectories from all models with different periods between outputs
but with periods between 997ms and 1005ms in all iterations are also included. The last includes
asymptotic incremental models, stochastic models, and fuzzy models or chaotic models, to mention
a few options.

Similarly, we can define a Processor model as the one presented in Section 2.2 but with Uncer-
tainty. In this example, our Processor propagates the values being introduced by input events with
uncertainty. The processing time is 250ms .

Formally, ProcessorU A is an atomic model described by the tuple 〈X ,Y , S,δint ,δext , λ, ta〉where:
X = Y = N; Xp = P (N) − ∅; Yp = P (N)
S = 〈TOCJ ,QJ 〉 where TOCJ represents the time (R+) since the current job started processing,

and QJ is a queue of processes identified by natural numbers;
Sp = P (S ) − ∅ δint (s ) = {〈0,dequeue (k .QJ )〉|k ∈ s};
δext (q,x ) = {〈0,queue (k .state .QJ ,x )〉|k ∈ q ∧ k .state .QJ .size = 0}

∪ {〈k .state .TOCJ + k .elapsed,queue (k .state .QJ ,x )〉|k ∈ q ∧ k .state .QJ � ∅};
λ(s ) = {k .QJ . f irst |k ∈ s}; ta(s ) = {0.25 − k .TOCJ |k ∈ s ∧ k .QJ � ∅}.
Here, sets X , Y , and S are specified in the same way as in the Processor model presented

in Section 2.2, but the functions have different signatures. δint uses a set of pairs s ∈ S , each
containing a Time of Current Job (TOCJ) and a Queue of Jobs (QJ). In every case, TOCJ is
reset to 0ms , and the first job is dequeued from QJ. δext receives a sub-set of input events (X ), and
an element of the set of current total states Qp . The total state is the product of the elapsed time
since the previous event (e), and the set of possible sequential states (an item of Sp ). The δext uses
those values to produce a set of new possible sequential states Sp . The new set of sequential states
contains the same queues in QJ components as before with the new jobs received queued to each
of them, and the TOCJ incremented the elapsed time (e). Alternatively, if there are no elements
in the set of sequential states, a new element is added with the job in QJ and 0ms in TOCJ. We do
not have to consider the case of Sp = ∅ because it is not a valid Sp value by definition in UA-DEVS
atomic models. The set of all outputs is obtained by reading the first element in the queue of
each parin the Sp set of states. Finally, time advance is the set considering every possible TOCJ
component in the received set of all possible sequential states, or in case all the queues are empty,
the ∅ indicating that the model is passive.
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3.2 Coupled Model

The coupled model is a hierarchical specification of how other models interact. This does not need
modifications from the original DEVS model. Even when messages passed will use Xp and Yp

values, they can be calculated from the original X and Y , as done in the atomic models.
We formally define a UA-DEVS coupled model as the tuple C = 〈X ,Y ,D,M, I ,Z , SELECT 〉
If we want to build an Uncertainty-Aware version of the model in Section 2.2 and shown in

Figure 1, we specify C = 〈X ,Y ,D,M, I ,Z , SELECT 〉 where:
X = Y = N; D = {G1,G2,G3,G4, P };
IG1 = C , IG2 = C , IG3 = C , IG4 = C , IP = {G1,G2,G3,G4}, Isel f = {P };
G1,G2,G3,G4 areGeneratorU A models, and P is a ProcessorU A model, all of them defined as in

this section;
Zsel f ,G1 (v ) = v , Zsel f ,G2 (v ) = v , Zsel f ,G3 (v ) = v , Zsel f ,G4 (v ) = v , ZP,sel f (v ) = v ,
ZG1,P (v ) = {1}, ZG2,P (v ) = {2}, ZG3,P (v ) = {3}, ZG4,P (v ) = {4};
SELECT (d ) =min(d ) where G1 < G2 < G3 < G4 < P .
This specification is almost identical to the one provided in Section 2.2, but we use the UA-

DEVS versions of the sub-models. The introduction of uncertainty invalidates the property of the
DEVS model in Section 2.2, where the maximum number of jobs in the queue at any time was
five. Here, we can have longer queues. For example, evaluating all generators always using the
minimum period in their uncertainty interval (997ms), the global maximum number of jobs in
the queue at any time is unbounded. However, it is still possible to find the local maximum for a
given period.

3.3 Using DEVS Models in UA-DEVS

In many cases, it is practical to transform a DEVS model into a UA-DEVS. This is key to reuse
models previously developed, allowing them to interact with new ones with uncertainty. If the
model being transformed is coupled, we can copy its specification as is, but replacing its sub-
models with UA-DEVS. If the model being transformed is atomic, we can copy the X , Y , and S
set definitions without modifications. The functions need to be replaced by higher-order versions,
where the result of the new function is equivalent to apply the function to every value in the input
sets. For example, δint (s ) = s + 1 can be replaced by δint (s ) = {k + 1|k ∈ s}.

3.4 Summary

We presented UA-DEVS, a specification language to describe Discrete-Event Systems for events
with uncertainty based in DEVS. Models specified with UA-DEVS can be interpreted as sets of
DEVS models for the analysis of their behavior and properties. However, any model producing an
infinite set would need an infinite combination of parameters to evaluate in each simulation step,
making it impossible to simulate on computers. In the next section, we present an approximation
method for obtaining a model in a new formal description called IA-DEVS. Using IA-DEVS we will
show computable algorithms to produce approximate sets of behavior trajectories.

4 INTERVAL-APPROXIMATED DEVS (IA-DEVS)

Here, we present a formal specification in which uncertainty is characterized by intervals. When
compared to UA-DEVS, the use of intervals adds some constraints to what can be modeled and not.
However, it also enables us to represent infinite sets using finite variables. An interval is defined
by its borders, which can be open or closed. Thus, they can be represented by using two values
and two Boolean. Representing the inputs, outputs, states, and time with a finite set of variables is
the first step toward producing trajectories of the dynamic behavior of the model in a computable
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way. One of the main reasons to define IA-DEVS to approximate UA-DEVS models instead of
using a single formalism, is to separate concerns. UA-DEVS describes a system as accurately as
possible using variables with uncertainty. Instead, IA-DEVS considers the tradeoffs of increasing
uncertainty to simplify the simulation. During modeling, UA-DEVS models could be defined by
domain experts, and IA-DEVS could be defined by simulation experts, who may not know the
modeling domain, but know better the computational constraints in the software application. In
addition, multiple IA-DEVS approximations of the same UA-DEVS model can lead to a different set
of trajectories that can be used to refine results by intersecting them, this is because those coming
from the original model are included in the results of every approximation.

4.1 Atomic Model

In IA-DEVS, in addition to the sets defining the inputs (X ), outputs (Y ), and sequential states (S), we
need to define intervals over them. Thus, we define them all as a quadruple with four fields, the first
is named values holding the set of values as defined in DEVS, the second is named order and defines
an order function over the values set, the third and fourth are functions that given an arbitrary
subset of the values produce lower and upper bound values that can be used to define an interval
containing all elements given. These functions are used to provide approximation parameters for
the simulation. The bound functions are used by the Simulator algorithms to approximate the
result set after computing each function.

In addition to the bounds for the defined sets, we need bound functions over R for the approxi-
mations of the outputs for the time advance function. We do not use the supremum, infimum, min-
imum, or maximum functions, because they may be too expensive (or even impossible) to compute
depending on the model. This will be in charge of the modeler. The total state set (Q) does not need
special order functions we define it as a function of the sequential state set quadruple (S), R+, and
the timebound function pair which already define orders and bound functions.

The importance of the ordering and bound functions is that they map every value in the set to an
interval with borders in computable representations containing them. In addition, the selection of
different representations can be used to access results quicker as a tradeoff of degrading accuracy.

Based on these ideas, an IA-DEVS atomic model is a tuple 〈X ,Y , S, timebounds,δint ,δext , λ, ta〉
where:

X is a tuple 〈Xvalues ,Xorder ,Xlowerbound ,Xupperbound 〉 characterizing the set of input values;
Y is a tuple 〈Yvalues ,Yorder ,Ylowerbound ,Yupperbound 〉 characterizing the set of output values;
S is a tuple 〈Svalues , Sorder , Slowerbound , Supperbound 〉 characterizing the set of sequential states;
timebounds is a pair 〈Tlowerbound ,Tupperbound 〉 of bound functions for time approximations;
Q : Svalues × P (R+) is the set of total states; δint : Sp → Sp is the internal state transition

function;
δext : Qp × Xp → Sp is the external state transition function;
λ : Sp → Yp is the output function;
ta : Sp → P (R+) is the time advance function.
For these functions we define as follows:

Xp : P (Xvalues ) − ∅ is the set of uncertainty-aware inputs;
Yp : P (Yvalues ) is the set of uncertainty-aware outputs;
Sp : P (Svalues ) − ∅ is the set of uncertainty-aware sequential states;
and Qp : P (Qvalues ) − ∅ is the set of uncertainty-aware total states.

Using the set of values (Xvalues , Yvalues , Svalues , Q) we produce combinations of values using
power-sets as we did for UA-DEVS, and we name them Xp , Yp , Sp , and Qp . These sets are used to
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define the domain and co-domain of δint , δext , λ, and ta. Having the same domain and co-domains
allows us to define these functions as in the UA-DEVS model, making the transition from UA-DEVS
to IA-DEVS model simple. Similarly to UA-DEVS, we define that an empty set defines a passive
model, and the simulation can stop when all the models are passive as we did in UA-DEVS.
δint , δext , λ, ta use arbitrary domain and co-domains. Although in theory, this is correct, in

practice is sometimes impossible to manage these sets, which can have infinite elements (which
cannot be bounded and could even be continuous). Then the functions order, lower bound, and
upper bound are used to define sets of intervals (XI , YI , SI , QI ), and we use them to define new
functions (Δint , Δext , Λ,TA) that approximate the previous ones using intervals in their definitions,
as follows:
XI is the set of all intervals in Xvalues ordered by Xorder whose lower bounds are in the Image

set of Xlowerbound and the upper bounds are in the Image set of Xupperbound ;
YI is the set of all intervals in Yvalues ordered by Yorder whose lower bounds are in the Image

set of Ylowerbound and the upper bounds are in the Image set of Yupperbound ;
SI is the set of all intervals in Svalues ordered by Sorder whose lower bounds are in the Image

set of Slowerbound and the upper bounds are in the Image set of Supperbound ;
R+I is the set of all intervals in R+ ordered by < whose lower and upper bounds are in the Image

sets of the timebound functions.
QI is the set of all pair of intervals where the first component is in SI , and the second component

is in R+I .
Using these approximations, we define the functions to be used by the simulation algorithms.

We note them with uppercase Greek letters to differentiate them from the original functions.
Δint : SI → SI Δint (s ) = Θ(δint (s ), Slowerbound , Supperbound ),
Δext : QI × Xp → SI Δext (q,x ) = Θ(δext (q,x ), Slowerbound , Supperbound ),
Λ : SI → Yp Λ(s ) = Θ(λ(s ),Ylowerbound ,Yupperbound ),

TA : SI → R+I TA(s ) =
⎧⎪⎨
⎪
⎩

∅ if ta(s ) = ∅
Θ(ta(s ), timeboundslower , timeboundsupper otherwise,

where Θ(vals, lb,ub) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

[lb (vals ),ub (vals )] if lb (vals ) ∈ vals ∧ ub (vals ) ∈ vals
(lb (vals ),ub (vals )] if lb (vals ) � vals ∧ ub (vals ) ∈ vals
[lb (vals ),ub (vals )) if lb (vals ) ∈ vals ∧ ub (vals ) � vals
(lb (vals ),ub (vals )) if lb (vals ) � vals ∧ ub (vals ) � vals

.

The approximated functions of the model are similar to the original transition functions. Each
approximation function follows the same principle: The variables are passed to the original
function, and an interval including all the results of the original function is used as a result. The
interval is constructed using the bound functions. It may be impossible to compute the original
functions for an infinite set of values; for example, it is impossible to compute all the square roots
of the Real numbers between 1 and 3; but defining a function to limit these values is trivial. For
example, the id function, as all square roots of Real numbers between 1 and 3, are in fact in the
interval [1, 3].

These approximations allow us to represent arbitrary sets by only using two elements (upper
bound and lower bound), and by defining if the boundaries are open or closed. The advantage
of interval variables is that they can represent an infinite set of values in a compact form that
can be used to make the simulation simpler—but at the expense of calculation errors. The errors
are treated so they only add unexpected trajectories to the set of solutions, and a valid trajectory
is never missed. For example, if Svalues includes all the natural numbers between 2 and 100, the
order function for the approximation is <, the lower and upper bound functions areminimum and
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maximum, the values “2, 4, 6" are approximated by the interval [2, 6] which also includes 3 and 5.
These two additional values will propagate through the simulation introducing new trajectories;
nevertheless, the original trajectories remain; we just increment the number of elements.

4.2 Coupled Model

IA-DEVS coupled models need new definitions. We need bounding functions and order functions
for X and Y as we did for the atomic models. Although all the inputs will be intervals (as they
can only be produced by atomic models), using Z functions as in UA-DEVS can produce infinite
discontinuous intervals. The output of these functions must be bound to a single interval. The
bounds over Y are used for external output couplings, and the bounds overX are used for external
input couplings, internal couplings useX and Y bounds defined in the models been connected. We
formally define an IA-DEVS coupled model as C = 〈X ,Y ,D,M,Z , SELECT 〉 where:
X is a tuple 〈Xvalues ,Xorder ,Xlowerbound ,Xupperbound 〉 characterizing the set of input values;
Y is a tuple 〈Yvalues ,Yorder ,Ylowerbound ,Yupperbound 〉 characterizing the set of output values;
Xp : P (Xvalues ) − ∅ is the set of uncertainty-aware inputs;
Yp : P (Yvalues ) is the set of uncertainty-aware outputs;
XI is the set of all intervals in Xvalues ordered by Xorder whose lower bounds are in the Image

set of Xlowerbound and the upper bounds are in the Image set of Xupperbound ;
YI is the set of all intervals in Yvalues ordered by Yorder whose lower bounds are in the Image

set of Ylowerbound and the upper bounds are in the Image set of Yupperbound ;
For each d ∈ D,Md is an IA-DEVS model, for each d ∈ (D ∪ sel f ), Id is the influencer set of

d : Id ⊆ (D ∪ sel f ),d � Id and for each i ∈ Id , Zi,d is the i to d output translation function; and
SELECT : (P (D) − ∅) → D is the tie-breaker function in case of simultaneous events. First, X and
Y ; they are defined as in the IA-DEVS atomic model, they are quadruples with values, order, upper

bound, and lower bound fields. Second, we define Xp , Yp , XI , and YI to describe all uncertainty sets,
and all the intervals approximating those sets. Third, as in UA-DEVS, the model structure is as in
DEVS. Finally, the translation (Z ) and SELECT functions are similar to UA-DEVS. In addition, we
define new translation functions using the intervals for approximation (Z I A) below.

For each d ∈ D, Md is an IA-DEVS model, for each d ∈ (D ∪ sel f ), Id is the influencer set of
d : Id ⊆ (D ∪ sel f ),d < Id , and for each i ∈ Id , Z I A

i,d
is defined as

if d = sel f :
Z I A

i,d
: Mi .YI → Msel f .YI ,

Z I A
i,d

(x ) : Θ(Zi,d (x ),Ylowerbound ,Yupperbound ),

otherwise:

Z I A
i,d

: Mi .YI → Md .XI ,

Z I A
i,d

(x ) : Θ(Zi,d (x ),Md .Xlowerbound ,Md .Xupperbound ).

The definition of the approximated translation functions (Z I A) uses intervals as input and output.
In the case of the external input couplings (those connecting inputs in a model with inputs of its
sub-models), the domain of the function isXI of the coupled models, and the co-domain is inXI of
the receiving sub-model. In the case of external output couplings (those connecting the output of
sub-models with the model outputs), the functions have domain in YI of the origin sub-model and
co-domain in YI of the coupled model. Finally, in the case of internal couplings (those connecting
sub-models outputs to inputs), the functions have domain in YI of the sub-model origin of the
translation and co-domain inXI of the receiving models. The functions are built using the previous
definition of transition functions and applying bound functions to them.
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For Z I A functions, the bound functions of the input and output need to be applied to allow
reutilization of models, otherwise, we would need to requirements for each input and output par-
ticipating in a coupling to match completely their definitions.

4.3 Summary

We defined a new formal specification of models including uncertainty specifications as intervals.
Its goal is to approximate general UA-DEVS models to create computable simulations. Having
intervals in place of general sets allows us to keep track of the simulation state, messages, and
time in quadruples (the intervals) when UA-DEVS models may need uncountable sets.

To work with intervals, we needed to add approximation parameters as order and bounding
functions. The approximation by interval introduces errors in the uncertainty propagation. How-
ever, these errors only introduce new non-reachable trajectories, and reachable ones are never
discarded. When IA-DEVS is used to approximate a UA-DEVS model, the set of trajectories of its
simulation are expected to super-set those from the UA-DEVS model, as shown in Section 7.

Having IA-DEVS and UA-DEVS definitions allows us to separate concerns. On one hand, UA-
DEVS allows us to model the system and its uncertainties accurately. On the other hand, IA-DEVS
allows us to simulate the UA-DEVS model based on computational constraints (time, memory, etc.).
This separation of concerns allows the domain expert to define the model once, and then we can
simulate it with different constraints without redefining the model.

5 UA-DEVS TO IA-DEVS APPROXIMATION PROCESS

The process for approximating an atomic IA-DEVS model consists of four steps:

— Defining the input set, order, and bounds (X ),
— Defining the output set, order, and bounds (Y ),
— Defining the sequential state set, order, and bounds (S), and
— Defining the timebound functions.

First, we copy the definition of the δint , δext , λ, and ta functions defined in the UA-DEVS model
has been approximated. Then, define order and bounding functions for X , Y , S , and time . The
simulation algorithms for IA-DEVS, defined in the next section, only compute Δint , Δext , Λ, andTA
functions; all other functions are part of the theoretical framework to produce them. In Section 4,
we showed how Δint , Δext , Λ, and TA are mechanically derived from X , Y , S , timebounds , δint ,
δext , λ, and ta. Choosing different order and bounding functions for X , Y , S , and time allows us
to adjust domain and image set for the Δint , Δext , Λ, and TA, determining if those functions are
computable or not, the expectations about errors introduced by approximation, and the complexity
of the calculations.

For example, if we have a UA-DEVS model with X = R, we define Xvalues = R, and we must
choose functions forXorder ,Xlowerbound , andXupperbound . A common example would be to choose
<R as the order function. For the bounding functions, we can start from a target computer data
type, e.g., 32-bit IEEE754 floating point (FP32), and work backward. We define bounding functions
from any subset of R into the finite set of values that FP32 can represent. A trivial bound function
with the image in FP32 would be to define them as constant functions∞−, and∞+. This produces
a single input interval for Δext which is (∞−,∞+). Other alternatives include, but are not limited
to

— the lower bound is the maximum FP32 value lower than the lowest value in the input set, and
the upper bound is the minimum FP32 value strictly above the highest value of the input set.
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— the lower bound is the maximum FP32 value lower than or equal to the lowest value in the
input set, and the upper bound is the minimum FP32 value above the highest.

— the lower bound is ∞−, and the upper bound is the minimum FP32 value above the highest
value in the input set.

— if using an integer in place of FP32 for representation, the lower bound could be the floor
function, and the upper bound the ceiling. We should reserve two values to represent
infinities.

Let us show the process for approximating the Generator model. If we consider the approximation
definition for the GeneratorU A model as presented in Section 3, we can choose to order elements
in X and S using the lower-than function of R, and the Y elements by a custom order function, as
follows:
X = 〈R, <R,x → ∞−,x → ∞+〉 Y = 〈{1, 2}, <bin ,y → 1,y → 2〉 where 1 <bin 2 ∧ 2 ≮bin 1
S = 〈R, <R, s → s > −1000?IntFloor (in f (s ) ∗ 100)/100 : ∞−, s → s < 1000?IntCeil (sup (s ) ∗

100)/100 : ∞+〉
timebounds (t ) = 〈t → IntFloor (in f (t )∗100)/100, t → t < 1000?IntCeil (sup (t )∗100)/100 : ∞+〉
Here, the bound functions forX are constant with infinity as result to avoid calculations (always

producing the interval (∞−,∞+), as the model discards all inputs). This is a case the modeler can
notice and use as an optimization for the simulation. Similarly, we keep fixed bounded results for
Y . For S and timebounds , we round the bounds to integer multiples of 0.01. This allows a simple
representation of the states using pairs of decimal fixed-point variables. The decimal representa-
tion should also support infinity for high and low values to keep a finite representation, in this
case, we use infinity for values below “1,000 and above 1,000”.

A second example shows the IA-DEVS approximation of the UA-DEVS Processor model pre-
sented in Section 3. In this case, we are going to use the < function of N for the order of X and Y ,
and minimum/maximum bounds capped on 32, 768 to be able to fit them in a 16 bits integer vari-
able. For S , we first define an order function comparing the Svalues first component (TOCJ); when
they are equal, we use the second component (QJ) to decide. For timebounds we round to integer
multiples of 0.001, using the floor and ceiling for lower/upper bounds and infinite for values larger
than 1,000ms .

The formal definition of ProcessorI A is then the tuple P = 〈X ,Y , S, timebounds,δint ,δext , λ, ta〉
where:

X = 〈N, <N,min(x , <N),x <N 32768?max (x , <N) : ∞+〉; Y = 〈N, <N,min(y, <N),y <N
32768?max (y, <N) : ∞+〉;
Svalues = 〈TOCJ ,QJ 〉 withTOCJ (R+) the time of processing, and QJ a queue of processes (N);
Sorder (a,b) = a.TOCJ <T OC J b .TOCJ ∨ (a.TOCJ = b .TOCJ ∧ a.QJ <Q J b .QJ ) where:

a <T OC J b ⇔ a <R b;
a <Q J b ⇔ (a.size < b .size ∨ (a.size = b .size ∧ a � ∅ ∧ (a. f irst < b . f irst ∨dequeue (a)
<Q J dequeue (b)))));

Slowerbound (s ) = IntFloor (in f (s .TOCJ , <T OC J ) ∗ 100)/100,min(s .QJ , <Q J )〉;
Supperbound (s ) = IntCeil (sup (s .TOCJ , <T OC J ) ∗ 100)/100,max (s .QJ , <Q J )〉; and
timebounds (t ) = 〈IntFloor (in f (t ) ∗ 1000)/1000, t < 1000?IntCeil (sup (t ) ∗ 1000)/1000 : ∞+〉.
Finally, using the atomic models above, we show how to compose the IA-DEVS version of the

coupled model of Figure 1. The specification only differs from the UA-DEVS in the X and Y sets
definition. Since X is not connected to any model, we define it as a set of reals with bounds in the
infinity. In the case of Y , we use the same specification as the output of the Processor model.

X = 〈R, <R,∞−,∞+〉 Y = 〈N, <N,min(y, <N),y <N?max (y, <N) : ∞+〉.
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6 IA-DEVS SIMULATION ALGORITHMS

In this section, we present an Abstract Simulation algorithm for IA-DEVS. Similarly to DEVS ab-
stract simulator, we define three components: Simulator, Coordinator, and Root Coordinator.
Each of them presents a similar interface to the algorithms for DEVS presented in [20].

In previous work [17], we discussed algorithms for simulating introducing a set of external
events with uncertainty to a DEVS atomic model to produce a set of trajectories. The trajectories
were guaranteed to produce a superset of trajectories expected to be generated by evaluating all
the events in the uncertainty intervals. This work allowed us to explore basic conflict resolution of
multiple events overlapping their uncertain occurrence intervals while simulating. The algorithms
were limited to simulate only atomic DEVS models. Thus, uncertainty in models could not be
modeled, only was allowed on the input. In previous sections, we introduced new formalisms to
specify models with uncertainty as part of their definition and here, we add support to handle
those new definitions and simulate both atomic and coupled models.

6.1 Simulator

The Simulator (Algorithm 1) manages atomic models. The only parameter needed for a Simulator

is the model to be simulated. Three internal variables track the simulation progress: tlast holds the
time of the last processed event; tnext holds the time of the next scheduled internal event; and
state holds the last computed sequential state. All these variables are expressed as intervals with
bounds in timebound functions image set and SI set.

We mentioned in Section 2.2 that DEVS algorithms were specified using four functions: init-

function, *-function, x-function, and y-function. The algorithm we present here uses only three
functions: init-function, *-function, and x-function. The y-function is embedded in the other func-
tions to provide a sequential algorithm per simulation branch. In IA-DEVS, algorithms use con-
currency to explore multiple simulation paths that a trajectory could advance based on the model
uncertainty. We believe that using sequential algorithms inside each of the explorations keeps
algorithms simpler to understand [16]. It is possible to translate the abstract algorithms into a dis-
tributed implementation per exploratory branch, as far as race conditions and branch explosion
are considered.

The init-function, used for initializing the simulation, receives an interval of total states (q) and
an interval of a current simulation time (t ). The state variable is assigned with the sequential state
component of q, and tlast is computed as the current time (t ) minus the elapsed time component of
q. Finally, the tnext is computed as the obtained tlast plus the time advance (TA) for the current state.
The initial time and the initial states are not a part of the model; we need to pass them as parameters,
which allows stopping and resuming simulations, skipping the processing of well-known parts of
the simulation, or setting up multiple initial conditions without changing the model.

The *-function (or advance-function) advances the simulation at the time of internally scheduled
events. First, we get the interval of output values for the current state using Λ computed from the
model. Second, a new interval of sequential states is set using Δint computed from the model. The
call to Δint does not require a time parameter, given it is implicitly known as the time-advance of
the current state. Third, tlast is set to the current time, and tnext is the current time plus the TA
function results. Finally, we return the interval of output values that was obtained at the start of
the function.

In the *-function first two lines, we check if parameter t is included in tnext ; if not, we throw
an error. This invariant helps early detection of implementation errors. We return an interval of
output values; however, we set the return type as an Optional of output values (to keep the same
interface for Simulator and Coordinator; we will discuss the Optional type in the next section).
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ALGORITHM 1: Simulator for IA-DEVS

1 Atomic IA-DEVS a

2 R+
I
tlast

3 R+
I
tnext

4 a.SI state

5 Function init(initstate q, R+
I
t )→ void

6 state = qstate

7 tlast = (t − qt ime ).apply (timebounds )

8 tnext = (tlast + a.TA(state )).apply (timebounds )

9 Function *-function(R+
I
t )→ Optional < a.Y >

10 if t � tnext then

11 RAISE ERROR

12 a.YI y = a.Λ(state )

13 state = a.Δint (state )

14 tlast = t

15 tnext = (tlast + a.TA(state )).apply (timebounds )

16 return Optional.of(y)

17 Function x-function(a.XI x , R+
I
t )→ void

18 R+
I
tlocal

19 tlocal .upperend = t .upperend − tlast .lowerend

20 tlocal .upperclosed = t .upperclosed ∧ ¬tlast .lowerclosed

21 if t ∩ tlast � ∅ then

22 tlocal .lowerend = 0

23 tlocal .lowerclosed = true

24 else

25 tlocal .lowerend = tlower end − tlast .upperend

26 tlocal .lowerclosed = t .lowerclosed ∧ tlast .upperclosed

27 state = a.Δext (〈state, tlocal 〉,x )

28 tlast = t

29 tnext = (tlast + a.TA(state )).apply (timebounds )

The x-function processes external events. First, we define a relative time interval (tlocal ) that
represents an interval between the possible times of the event being introduced and the possible
times of the last event. This does not match with the definition of the difference between intervals,
so we do not use the interval subtract operation for it. The lower end of the tlocal is set to zero
when the introduced event interval overlaps with the interval of the last event processed. Here,
we account for the case that both events are occurring at the same time, but it is decided which to
execute first based on the SELECT function. The upper end is calculated as the largest difference
between a value in the tlast interval and one in the t interval, this is the difference between the
largest value in t and the lowest in tlast . There is no concern about the upper end of tlocal being
higher than the next scheduled internal event; that case is managed at the Coordinator level, as
we will show in the next section.

Once the local time is known, we advance the simulation by using the Δext computed function
to change the current state, and we set tlast and tnext as we do in *-function.

At the end of every function, we normalize the tnext variable value using the timebound func-
tions to be certain the result is representable.
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6.2 Coordinator

The Coordinator (Algorithm 2) manages the simulation of coupled models. The only parameter
for the construction of a Coordinator is the model to be simulated. Three internal variables track
the simulation progress: tlast holds the time of the last processed event; tnext holds the time of
the next expected internal event; and E holds a tuple of Engines (Simulators or Coordinators)
for simulating the sub-models of the model being simulated (c). Similarly to the Simulator, time
variables are expressed as intervals, and three functions are defined: init-function, *-function, and
x-function.

ALGORITHM 2: Coordinator for IA-DEVS

1 Coupled IA-DEVS c

2 R+
I
tlast

3 R+
I
tnext

4 Tuple of Engines E /* Coordinators and Simulators */

5 Function init(initstate q, R+
I
t )→ void

6 forall the d ∈ c .D do

7 if c .Md is atomic then

8 Ei = Simulator(Mi )

9 else

10 Ei = Coordinator(Mi )

11 Ei .init (qi , t )

12 BoundTs ()

13 Function x-function(a.X x , R+
I
t )→ void

14 forall the c .Isel f : i do

15 x-function(Z I A
sel f ,i

(x , t ))

16 BoundTs ()

17 Function BoundTs()→ void

18 tlast .upperend =max (Ei .tlast .upperend |i ∈ c .D)

19 tlast .lowerend =max (Ei .tlast .lowerend |i ∈ c .D)

20 tlast .upperclosed = ∃i : tlast .upperend ∈ Ei .tlast

21 tlast .lowerclosed = ∀i ∈ c .D,Ei .tlast .lowerend = tlast .lowerend ⇒ Ei .tlast .lowerclosed

22 tnext .upperend =min(Ei .tnext .upperend |i ∈ c .D)

23 tnext .lowerend =min(Ei .tnext .lowerend |i ∈ c .D)

24 tnext .upperclosed = ∀i ∈ c .D,Ei .tnext .upperend = tnext .upperend ⇒ Ei .tnext .upperclosed

25 tnext .lowerclosed = ∃i : tnext .lowerend ∈ Ei .tnext

/* Continues in Algorithm 3 */

The init-function is used for initializing the simulation. First, we construct the tuple of engines
(E) based on the sub-models of c . For each atomic sub-model, we construct a Simulator, and for
each coupled sub-model, we construct a Coordinator. After initialization, we treat these engines
indistinctly, that is why we used the exact same interface for Simulators and Coordinators and
called it the Engine interface. The init-function receives a tuple of initialization values (q) and
a time interval (t ). Each element in the q tuple represents the initialization values of an engine
simulating a sub-model of c . For Simulator engines, the element forwarded is an interval of total
states, while for Coordinator engines, the element forwarded is a tuple of initialization values.
For deciding which element to forward, the tuple is indexed by model identifiers (D). In addition to
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ALGORITHM 3: Coordinator for IA-DEVS Continuation

1 Function *-function(R+
I
t )→ Optional < a.Y >

2 List of Engines Imminents

3 Imminents = d |d ∈ c .D,Ed .next ∩ t � ∅ sorted by�R+
4 Interval of R+ limit

5 limit = f irst (Imminents ).tnext ∩ t
6 if ∃i∀k∃p |i ∈ Imminents,k ∈ Ei .tnext ,p ∈ Ef ir st (imminents ) .tnext ,p < k then

7 limit .upperend = Ei .tnext .lowerend

8 if Ei .lowerclosed then

9 limit − {Ei .lowerend }

10 if limit .lowerend = limit .upperend ∧ limit .closed then

11 Engine Enext = c .SELECT ({Ei |i ∈ Imminents ∧ Ei .tnext ∩ limit � ∅})
12 if limit � Enext .tnext then

13 FORK

14 On Child

15 Enext .tnext = Enext .tnext − limit

16 return this.*-function(t)

17 c .Y y = route (Enext , limit )

18 BoundTs()

19 return y

20 forall the {i |i ∈ Imminents ∧ Ei .tnext ∩ limit � ∅} : i do

21 FORK

22 On Child

23 c .Y y = route (Ei , limit )

24 BoundTs()

25 return y

26 if ∀i |i ∈ Imminents ⇒ Ei .tnext − limit � ∅ then

27 forall the {i |i ∈ Imminents} do

28 Ei .tnext = Ei .tnext − limit

29 else

30 EXIT

31 Function route(Engine e, Interval R+ t)→ Optional < a.Y >
32 y = e .*-function(t )

33 forall the {r |r ∈ c .Ii } : r do

34 Er .x-function(Z I A
i,r (y, t )

35 if sel f ∈ Ii then

36 return Z I A
i,sel f

(y)

37 else

38 return nil

the initialization values, every engine receives the time interval parameter (t ). After every engine
is initialized, the time values are set using the helper function BoundTs.

BoundTs function collects the tlast and tnext intervals from all elements in E and constructs
a single interval for each variable. The tlast is set to an interval containing the most recent tlast
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values. The tnext is set with the closest to happen interval of event times scheduled in E. Depending
on competing scenarios between engines in E, the intervals may be adapted and not match any of
the original ones.

For coupled models, we do not define timebound functions as in atomic models. We do not want
to extend the calculated set of values obtained by E elements after resolving competing scenarios,
because those scenarios could be reintroduced. Also, we know that all resulting intervals are
representable, given the ends are ends of those represented already in E elements.

The *-function advances the simulation when an internal event is scheduled. First, we find the
imminent engines, which are engines from E candidate executing its *-function inside the t interval
passed as a parameter. We keep the list of imminent models sorted by applying� to the engines’
tnext . The � function sorts intervals first by the lowest value in each set, and when the lowest
value is the same, it sorts by the higher value contained in each set. Once the imminent model
is chosen, we define a limit variable setting the interval of event times that we can advance the
simulation in a single step. This interval is chosen by removing all the event times described by
tnext intervals starting later than the first interval in the list and restricting the upper-end to be as
most as the lowest of the intervals starting at the same time as the first engine’s tnext of the list of
imminent engines.

If the limit interval is punctual, we use SELECT to decide which engine to advance first. If the
punctual limit interval is included in the tnext of the engine is advanced, we branch simulation for
this case, and the case where the interval does not include this particular point. Else, we advance
without branching. If the limit interval is not punctual, we branch the simulation in as many cases
as imminent engines we got on the list. In each branch, we advance simulation by a different engine
first. In both cases, punctual and non-punctual limit intervals, the output from the imminent is
routed using x-function to other models accordingly to the coupling definitions described by I and
Z I A. Finally, if the model is an influencer of sel f , we use the corresponding Z I A function to return
the interval ofY values or return nothing (empty Optional). After the simulation advances in all ele-
ments of E requiring it, the BoundTs function is used to obtain the new intervals for tlast and tnext .

The x-function processes external events. In case an external event is received by a Coordinator,
we review the set of influenced (I ) and use the computed Z I A to make necessary transformations
and route the event to the engines in E requiring it by calling x-function for each of them. After all
engines processed the events sent for processing, we use the BoundTs function to set tnext and tlast .

We apply BoundTs functions after each of the operations. This is to enable modelers to use
flexible data types that may not be closed under addition, for example, in Floating Point adding two
values in the domain may approximate the result to a value close to its arithmetic result. For those
datatypes, when adding tnext toTA, if the results need to be approximated for the interval borders
we use the BoundTs function to guarantee that the borders are approximated in the directions that
include all the values required.

6.3 Root Coordinator

Root Coordinator, the main-loop of the simulation, uses two variables, one to hold the reference
to a Coordinator of the topmost coupled model (E), usually called top-model, and the other to
keep track of current time as an interval (tcurr ent ).

The Root Coordinator has a single function called simulate , which uses three parameters, the
top coupled model (c), the initialization values tuple (q), and the initial time of the simulation (t ).
First, a Coordinator is created for c and assigned to the variable E. Second, q and t are forwarded
to E for initialization, and tcurr ent is set to E’s tnext value. Finally, the simulation loops calling E’s
*-function with tcurr ent and advancing tcurr ent to E’s tnext value until it reaches a passive state
(tcurr ent = ∅).
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7 CASE STUDY

In this section, we present the steps for generating behavior trajectories for the example model
described in previous sections using the algorithms proposed.

7.1 Derived Model Functions

First, we need to obtain the derived functions for both atomic models and the top coupled model.
For this purpose, we apply the functions provided in Section 4 to the definitions provided in each
example in Section 5.

The functions derived for the GeneratorI A model are as follows:
Δint (s ) = Θ(δint (s ), Slower ebound , Supperbound ) ∴ Δint (s ) = Θ({0}, Slower ebound , Supperbound ),
∴ Δint (s ) = [0, 0],

Δext (q,x ) = Θ(δext (q,x ), Slowerbound , Supperbound ) where δext (s ) = {(s + e ) |s ∈ q.state ∧ e ∈
q.time},

Λ(s ) = Θ(λ(s ),Ylowerbound ,Yupperbound ) ∴ Λ(s ) = Θ({1, 2},Ylowerbound ,Yupperbound ) ∴ Λ(s ) =
[1, 2]

TA(s ) =
⎧⎪⎨
⎪
⎩

∅ if (ta(s ) = ∅)
Θ(ta(s ),Tlowerbound ,Tupperbound ) otherwise

where ta(s ) = {(l − e ) |l ∈ [997, 1005]ms ∧ e ∈ s}
The functions derived for the ProcessorI A model are as follows:
Δint (s ) = Θ(δint (s ), Slower ebound , Supperbound ) where δint (s ) = {〈0,dequeue (k .QJ )〉|k ∈ s}
Δext (q,x ) = Θ(δext (q,x ), Slowerbound , Supperbound ) where δext (q,x ) = {〈0,queue (k .state .QJ ,

x ) |k ∈ q ∧ k .state .QJ .size = 0} ∪ {〈k .state .TOCJ − k .elapsed,queue (k .state .QJ ,x )〉|k ∈ q ∧
k .state .QJ � ∅}

Λ(s ) = Θ(λ(s ),Ylower ebound ,Yupperbound ) where λ(s ) = {k .QJ . f irst |k ∈ s}

TA(s ) =
⎧⎪⎨
⎪
⎩

∅ if (ta(s ) = ∅)
Θ(ta(s ),Tlowerbound ,Tupperbound ) otherwise

where ta(s ) =
⎧⎪⎨
⎪
⎩

{k .TOCJ |k ∈ s} if �q |q ∈ s ∧ q.QJ = ∅
{∞+} ∪ {k .TOCJ |k ∈ s ∧ k .QJ � ∅} otherwise

The derived Z I A for the top model are:
For each d ∈ D,Md is a IA-DEVS model, for each d ∈ (D ∪ sel f ), Id is the influencer set of

d : Id ⊆ (D ∪ sel f ),d � Id and for each i ∈ Id , ZAI
i,d

is defined as

ZAI
i,d

(x ) =
⎧⎪⎨
⎪
⎩

{(a,b) + c |a = Ylowerbound (c ),b = Yupperbound (c )} if d = sel f

{(a,b) + c |a = Md .Xlowerbound (c ),b = Md .Xupperbound (c )} otherwise
where c = Zi,d (x )
Applying to each case in the UA-DEVS coupled model definition of Z we obtain: Z I A

Gi,P (v ) =

Θ({i}, P .Xlowerbound , P .Xupperbound ) = [i, i], where i in {1, 2, 3, 4}, Z I A
P,sel f

(v ) = (Ylowerbound (v ),

Yupperbound (v )) +v .

7.2 Initialization

We define the initialization values provided to the top coupled model as a tuple of initialization
values for each subcomponent. Each generator starts with a sequential state interval of [0, 0], and a
time interval of [0, 0]ms . The Processor starts with an empty queue and with no scheduled internal
transition. Formally, we write Cinit = 〈G1init ,G2init ,G3init ,G4init , Pinit 〉 where:

G1init = G2init = G3init = G4init = 〈[0, 0]
︸︷︷︸

state

, [0, 0]
︸︷︷︸

t ime

〉, and Pinit = 〈[〈
T OC J
︷︸︸︷

0 ,

Q J
︷︸︸︷

∅ 〉, 〈
T OC J
︷︸︸︷

0 ,

Q J
︷︸︸︷

∅ 〉]
︸�������������������������������������︷︷�������������������������������������︸

state

, ∅
︸︷︷︸

t ime

〉
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Table 1. Simulators Variables After Initialization

G1 G2 G3 G4 P

state [0, 0] [0, 0] [0, 0] [0, 0] [〈0, ∅〉, 〈0, ∅〉]
tlast [0, 0]ms [0, 0]ms [0, 0]ms [0, 0]ms [0, 0]ms
tnext [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [997, 1.005]ms ∅

ALGORITHM 4: Root Coordinator for IA-DEVS

1 Coordinator E

2 R+
I
tcurr ent /* Current time */

3 Function simulate(Coupled c , initstate q, R+
I
t )→ void

4 E = Coordinator (c )

5 E.init (q, t )

6 tcurr ent = E.tnext

7 while tcurr ent � ∅
8 E.*-function(tcurr ent )

9 tcurr ent = E.tnext

Following, we show how to initialize a modelC with the valuesCinit . First, the Root Coordina-

tor initializes the variables as described in Algorithm 4. A Coordinator (E) is defined for model
C and its init-function is called withCinit and initial time (t ) parameters. In the init-function of the
Coordinator Algorithm 2, the Coordinator will create engines (Coordinators or Simulators)
for each sub-model and forward each initialization element to the corresponded subcomponent’s
engine. When an init message is forwarded to a Simulator, Algorithm 1, the state is assigned to
the internal variable state , the time component of the init is assigned to the tlast variable, and the
value of the tnext variable is computed as the addition ofTA to tlast . The passed t value represents
the current time of the simulation and its only used for validation purposes by checking that it
is always between tlast and tnext for every initialized model. After all sub-models’ engines of a
Coordinator complete their initialization, the BoundTs function is used to set the Coordinators’

tlast and tnext values. Finally, the tnext value of the Coordinator of the top model (E) is assigned
as tcurr ent in the Root Coordinator.

Table 1 shows the values on the local variables for the Simulator of each atomic model at the
end of the initialization.

In addition to the variables in the Simulators, the Coordinator sets tlast to [0, 0]ms and tnext

to [997, 1,005]ms using the BoundTs function. Similarly, the Root Coordinator sets tcurr ent to
[997, 1,005]ms .

7.3 Advancing Simulation

After initialization is completed, the Root Coordinator iteratively advances the simulation. At
each step, the *-function of the top-level Coordinator (E) is called to simulate the events of the
current time (tcurr ent ), which is then updated with the new tnext of the Coordinator.

In the Coordinator, a set of imminent engines is chosen, in this case, the Simulators of all
the Generators. Using the first imminent and the current time, an advance limit is defined. The
limit has the role of preventing advancing when we have conflicting events. A conflict would be
produced when two or more events occur within non-equal overlapping intervals on the timeline.
When this happens, the limit is used to break the intervals in smaller cases where intervals
fully overlap, or they do not overlap at all. In this example, all imminent have fully overlapped
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Table 2. Simulators Variables After First Step of Simulation when Advancing G1’s Simulator First

G1 G2 G3 G4 P

state [0, 0] [0, 0] [0, 0] [0, 0] [〈0, 〈1〉〉,
〈0, 〈1〉〉]

tlast [997, 1,005]ms [0, 0]ms [0, 0]ms [0, 0]ms [997, 1,005]ms
tnext [1,994, 2,010]ms [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [1,247, 1,255]ms

Table 3. Simulators Variables After Four Steps in G1-G2-G3-G4 Branch

G1 G2 G3 G4 P

state [0, 0] [0, 0] [0, 0] [0, 0] [〈0, 〈1, 2, 3, 4〉〉,
〈0, 〈1, 2, 3, 4〉〉]

tlast [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms
tnext [1,994, 2,010]ms [1,994, 2,010]ms [1,994, 2,010]ms [1,994, 2,010]ms [1,247, 1,255]ms

occurrence intervals ([997, 1,005]ms), which also overlap with the current time. Then the limit is
the occurrence of them all ([997, 1,005]ms).

In lines 10–19 of the Coordinator’s *-function, Algorithm 3, we advance the simulation for
scenarios where the interval of event times is punctual, meaning having a single value. In this
example, we do not run these lines because the interval been evaluated is not punctual.

The rest of the function forks the simulation to have a branch for each imminent engine ad-
vancing inside the limit . In each branch, a different engine is treated as imminent. The imminent’
s *-function is called in the sub-engines until we reach a Simulator. The Simulator’s *-function,
Algorithm 1, uses the Λ function to produce an output, the Δint function to advance to the follow-
ing sequential state, and the TA to compute the new tnext . The output is routed to the influenced
engines using the Z I A and the influencee’s x-function.

In this example, the Coordinator creates four similar simulation branches. Table 2 shows the
variables of the branch when G1 is chosen to be executed first. There is no conflict in the changes
to the variables, as the Processor queued a message that will be output after all generators advance.

For each branch, the process is repeated three more times where the other generators are also
queuing and advancing similarly to the first one. After four simulation steps, we have 24 branches,
each with a different permutation of inputs to the Processor. In Table 3, we show the variables of
the branch were generators advanced in order G1, G2, G3, G4.

Afterward, the tnext variable in the Root Coordinator is set to [1,247, 1,255]ms . This matches
the time to advance the simulation on the Processor. Then, the Root Coordinator calls the *-

function of the coupled model, which forwards the call to the Processor, which, being the only
imminent model, has no special restriction applied by limit.

The *-function on the Processor Simulator first applies the Λ function and obtains the output set.
The output set will output the first process that was queued, which depends on the current branch
history. In the case of executing models in the orderG1,G2,G3,G4, P , the output is [1, 1]. Then, a
new state is obtained using the Δint function. The new state sets the TOCJ component to 0 and de-
queues the first job in QJ obtaining [〈0, 〈2, 3, 4〉〉, 〈0, 〈2, 3, 4〉〉]. Finally, tlast is assigned the current
time [1,247, 1,255]ms and tnext is computed using the TA function and set to [1,497, 1,505]ms .

Finally, the output interval obtained is returned to the Coordinator.
Back in the Coordinator, the value is routed using the Z I A functions. In this case, the output

is routed to as a coupled model output.
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Table 4. Simulators Variables After Seven Steps in G1-G2-G3-G4-P-P-P Branch

G1 G2 G3 G4 P

state [0, 0] [0, 0] [0, 0] [0, 0] [〈0, 〈4〉〉, 〈0, 〈4〉〉]
tlast [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [1,747, 1,755]ms
tnext [1,994, 2,010]ms [1,994, 2,010]ms [1,994, 2,010]ms [1,994, 2,010]ms [1,997, 2,005]ms

Table 5. Simulators Variables After Eight Steps in G1-G2-G3-G4-P-P-P-Nothing Branch

G1 G2 G3 G4 P

state [0, 0] [0, 0] [0, 0] [0, 0] [〈250, 〈4〉〉, 〈250, 〈4〉〉]
tlast [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [997, 1,005]ms [1,747, 1,755]ms
tnext [1,997, 2,010]ms [1,997, 2,010]ms [1,997, 2,010]ms [1,997, 2,010]ms [1,997, 2,005]ms

The tnext is set to the value obtained in the Processor for both the Coordinator and the Root

Coordinator, and the next two steps of simulation advance in an analogous way to obtain the
variables shown in Table 4.

At this point, all branches reach a similar conflicting state, where the Processor is expected to
output the last previously queued job at [1,997, 2,005]ms , and all the generators are trying to queue
new jobs at [1,994, 2,010]ms . This is the first conflict that will need slicing the intervals using the
limit variable to cover all the possible scenarios.

We start the iteration at the Root Coordinator with a tcurr ent of [1,994, 2,005]ms , which cor-
responds to the start of the generators’ tnext interval and the end of the Processor’s tnext interval
obtained by BoundTs in the previous simulation step. The *-function of the Coordinator is called
and the limit is set to [1,994, 1,997)ms . Then, the simulation is branched into five scenarios, one
per Generator that could be advanced plus one for the case none of them advance. In total, we
have now 120 branches being explored. However, many of the branches have equal values in all
the variables and could be merged to avoid recalculations. For example, from our 120 branches,
only 20 are different.

In all branches’ next step of the simulation, the tnext of the Root Coordinator matches the
[1,997, 2,005]ms from the Processor’s Simulator. In particular, the case in which none of the mod-
els advanced its variables is assigned as showed in Table 5.

Here, the next step produces a conflict between the five simulators. The limit is set to
[1,997, 2,005]ms matching the Processor’s tnext . Five new branches are created, each advancing
a different Simulator. In the case a Generator advances, the next step will have the limit coming
from the Processor again. In the case the Processor advances, the next step will have a conflict
between the four generators like the one at the start of the simulation with the difference that the
tnext interval will be smaller ([1,997, 2,010]ms) than the initial one ([1,995, 2,010]ms).

7.4 Results Discussion

By following different branches, we can observe some characteristics from the possible behaviors
of the model. First, we can see that the four Generators will queue a job before any gets processed
by the Processor. The order could be permuted, but no action from the Processor happens before
the four of them are queued. Second, after three jobs are processed multiple things could occur
depending on if the Processor processes the fourth job before getting a request for a new one or
not. In the case the fourth job is processed before the next request, the queue gets empty. In the
case a new job is queued before the fourth gets processed, we will have a queue of up to five jobs
when generators send the second wave of jobs.
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Analyzing the models and the simulation steps, we can see that the maximum size of queued jobs
is a linear function of the number of job waves received, with a minimum of 0 jobs. The Simulator
produces results consistent with these limits and no possibility is left uncovered by our algorithms.
Each different possibility is explored in a different branch of simulation which is reflected as a set
of branches in the resulting trajectories tree.

This example uses a model simple enough to be able to reason about it and validate its results.
However, the method works for arbitrary complex systems composed of large networks of inter-
connected models.

8 CONCLUSIONS

We discussed the current limitations of uncertainty propagation in Discrete-Event Systems mod-
els and proposed a formal generic specification for DES with uncertainty components named UA-
DEVS inspired in DEVS. The UA-DEVS formalism captures uncertainty generation and propaga-
tion by replacing the perfectly accurate events of DEVS with events defined by sets of messages
and sets of occurrences.

Advancing a single step of simulation of UA-DEVS models evaluating all combinations of states
and event occurrence times could be done by finite means in trivial cases only. In general, infinite
computer power is needed for processing a single simulation step. Thus, we define a second formal-
ism for approximating UA-DEVS models in a way that they could be simulated in computers. This
new formalism, IA-DEVS, approximates the sets of UA-DEVS models by intervals containing them.
To achieve this, the model needs the definition of several functions not relevant to the conceptual
model itself, but mandatory for its computable implementation. We introduce order and bounding
functions to make the variables able to represent their values by intervals. We introduce new out-
put transformation approximations to map between representations used by different sub-models
when writing an approximation of coupled models.

We presented the algorithms to simulate the approximated models with uncertainty propaga-
tion; these algorithms guarantee that the simulation of a single step could be simulated when the
model functions are computable. In addition, the algorithms guarantee that the set of generated
trajectories includes all trajectories expected from the original model being approximated.

We presented a method for defining an IA-DEVS model starting from a UA-DEVS model and an
example of how to capture a DEVS model as a UA-DEVS one.

In the future we propose as follows:

— Studying pruning mechanisms to remove trajectories that are not coming from the original
UA-DEVS model after producing a superset of them by approximating to IA-DEVS.

— Pruning to remove repeated branches producing the same set of trajectories.
— Exploring the use of IA-DEVS as an approximation of other formalisms. For instance, to

approximate DEVS models when simulated using approximated variables as Floating Point
whose problems we discussed in our previous research [14].

— Simulating interaction between different variants of the BitTorrent protocol in scale (swarms
larger than 20k peers). This is the original problem that motivated our research project,
when connecting the thousands of peers, we need to model a fully distributed system over
unknown network topology (Internet) with some well-known constraints. We would also
like to model asynchronous circuits and evaluate architectures for future processors.

— Studying applicability of our ideas to use PDEVS as base formalism in place of DEVS. Conflu-
ence function and bags of results introduce new challenges for the branching mechanisms.

— Defining the use of ports for input and output sets.
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